闂備線娼уΛ宀勫磻閿燂拷
闂備礁鎲¢悷锝夊磹閺囥垹瑙﹂柍褜鍓熼弻锟犲磼濮橆厽鎮欏銈嗗釜閹凤拷闂備胶绮划鎾汇€傞敃鍌氳埞妞ゆ帒瀚Λ姗€鏌涢妷鎴濊嫰婵★拷闂備礁鎲¢懝鍓х矓閹绢噮鏁婄€广儱顦Λ姗€鏌涢妷顔煎闁艰鎷�闂備礁鎲¢悷銊т焊濞嗘挻鍎撻柛鏇ㄥ灠閸屻劑鏌涢埄鍐炬當闁芥埊鎷�闂備焦鍎崇换鎴濈暆缁嬫娼¢柟绋垮嚱缁辨棃鏌″搴″箲闁逞屽墾閹凤拷闂佽崵鍠庨惃婵嬪磻閹剧粯鐓欐い鏍ㄧ閸e綊鏌i…鎴濆闁归濞€閺佹捇鏁撻敓锟�濠电偞鎸婚悢顒勬⒔閸曨厽鏆滃ù鍏兼綑缁犳娊鏌曟繛褍瀚埀顒婃嫹闂備礁鎲¢崝鏍矙閹邦喛濮抽柕濞炬櫅缁€鍐╃箾閹寸偟鎳勯柍鍑ゆ嫹缂傚倷绀侀ˇ浼村垂閸偄绶為柣鏃囨〃閻掑﹪鐓崶銊ュ毈闁搞倧鎷�闂備礁鎼崯鍐测枖濞戙垺鍎嶅┑鐘崇閳锋捇鏌涘☉銏犱喊闁搞倧鎷�
濠电姰鍨奸崺鏍偋閺囩伝鐟拔旈崨顓⌒曢悗骞垮劚閻楀﹪宕敓锟�濠电偟顥愰崑鎰叏妤e喚鏁婇柛銉㈡櫇濡垱銇勮箛鎾愁伀闁哄鎷�婵犵數鍋為幖鈺呭垂閹峰被浜归柟缁㈠枛濡﹢鏌涢妷鎴濊嫰婵★拷闂佽崵濮村ú锕傘€冩径鎰剨婵犻潧妫ḿ鎵偓鍏夊亾闁告劦浜楅崑锟�闂備礁鎲¢悷锝夊磹閺囥垹瑙﹂柍褜鍓熼幃妯跨疀閹惧墎顔戝銈嗘穿閹凤拷婵犳鍠楃换鎰磽濮樿鲸顐介柧蹇涒偓娑氬墾闂婎偄娲﹂崙褰掑吹閿燂拷闂備胶绮划宀€鈧凹鍓氬鍕偄閸濄儵妾梺鎼炲劵婵″洤鈻旈敓锟�闁荤喐绮嶆刊鐣屽垝妤e喛缍栭悗锝庡厸閻掑﹪鐓崶銊ュ毈闁搞倧鎷�缂傚倷绀侀惌渚€宕曢懡銈囩煋闁惧繐鍘滈崑鎾舵嫚閳ュ厖鍠婂┑鈽嗗亾閹凤拷闂傚倸鍊搁悧濠勬暜濡も偓鍗辨い鎺戝閸愨偓闂佺偨鍎村▍鏇㈡偪閿燂拷
虚阁网 > 费曼 > 别闹了,费曼先生 | 上页 下页
一一二


  4-18.运气,其实不简单

  在普林斯顿时,有一天我坐在休息室里,听到一些数学家在谈论e的级数。把e展开时,你会得到1+x+(x2/2!)+(x3/3!)十……式中每一项,来自将前一项乘以x,再除以下一个数字。例如,要得到(x4/4!)的下一项,你可把它乘以x和除以5.这是很简单的。

  很小的时候,我就很喜欢研究级数。我用这个级数方程式计算出e值,亲眼看到每一个新出现的项,如何很快地变得很小。

  当时我喃喃自语,用这方程式来计算e的任何次方(或称“幂次”)是多么容易的事。

  “咦,是吗?”他们说:“那么,e的3.3次方等于多少?”有个小鬼说——我想那是塔奇说的。

  我说,“那很容易。答案是27.11.”

  塔奇明白我不大可能单靠心算得到这答案的:“嘿!

  你是怎么算的?”

  另一个家伙说:“你们都晓得费曼,他只不过在唬人罢了,这答案一定不对。”

  他们跑去找e值表,趁此空档我又多算了几个小数位:“27.1126,”我说。

  他们在表中找到结果了:“他居然答对了!你是怎么算出来的?”

  “我把级数一项一项计算,然后再加起来。”

  “没有人能算得那样快的。你一定是刚巧知道那个答案。e的3次方又等于多少?”

  “嘿,”我说:“这是辛苦工呢!一天只能算一题!”

  “哈!证明他是骗人的!”他们乐不可支。

  “好吧,”我说,“答案是20.085.”

  他们连忙查表,我同时又多加了几个小数位。他们全部紧张起来了,因为我又答对了一题!

  于是,眼前这些数学界的精英分子,全都想不通我是如何计算出e的某次方!有人说:“他不可能真的代入数字,一项一项地加起来的——这太困难了。其中一定有什么诀窍。你不可能随便就算出像e的1.4次方之类的数值。”

  我说:“这确是很困难,但好吧,看在你的份上,答案是4.05.”

  当他们在查e值表时,我又多给他们几个小数位,说:“这是今天的最后一题啦!”便走出去了。


虚阁网(Xuges.com)
上一页 回目录 回首页 下一页