虚阁网 > 史籍 > 明史 | 上页 下页 |
大统历法·法原(3) |
|
▲盈缩招差图说 盈缩招生,本为一象限之法。(如盈历则以八十八日九十一刻为象限,缩历则以九十三日七十一刻为象限。)今止作九限者,举此为例也。其空格九行定差本数,为实也。其斜绵以上平差立差之数,为法也。斜绵以下空格之定差,乃余实也。假如定差为一万,平差为一百,立差为单一。今求九限法,以九限乘定差得九万为实。另置平差,以九限乘二次,得八千一百。置立差,以九限乘三次,得七百二十九。并两数得八百二十九为法。以法减实,余八万一千一百七十一,为九限积。又法,以九限乘平差行九百,又以九限乘立差二次得八十一,并两数得九进八十一为法,定差一万为实,以法减实,余矣千零一十九,即九限末位所书之定差也。于是瑞以九限乘余实,得八万一千一百七十一,为九限积,与前所不所得不同。盖前法是先乘后减,又法是先减后乘,其理一也。 按《授时历》于七政盈缩,并以垛积招差立算,其污七巧合天行,与西人用小轮推步之法,殊途同归。然世所传《九章》诸书,不载其术,《历草》载其术,而不言其故。宣城梅文鼎为之图解,于平差、立差之理,垛积之法,皆有以发明其所以然。有专书行于世,不能备录,谨录《招生图说》,以明立法之大意云。 盈初缩末 置立差三十一微,以六因之,得一秒八十六微,为加分立差。置平差二分四十六秒,倍之,得四分九十二秒,加入加分立差,得四分九十二秒八十六微,为平立合差。 置定差五百一十三分三十二秒,内减平差二分四十六秒,再减立差三十一微,余五百一十零分八十五秒六十九微,为加分。 缩初盈末 置立差二十七微,以六因之,得一秒六十二微,为加分立差。置平差二分二十一秒,倍之,得四分四十二秒,加入加分立差,得四分四十三秒六十二微,为平立合差。 置定差四百八十七分零六秒,内减平差二分二十一秒,再减立差二十七微,余四百八十四分八十四秒七十三微,为加分。 已上所推,皆初日之数。其推次日,皆以加分立差,累加平立合差,为次日平立合差。以平立合差减其日加分,为次日加分,盈缩并同。其加分累积之,即盈缩积,其数并见立成。 ▲太阴迟疾平立三差之原 太阴转周二十七日五十五刻四六。测分四象,象各七段,四象二十八段,每段十二限,每象八十四限,凡三百三十六限,而四象一周。以四象为法,除转周日,得每象六日八八八六五,分为七段,每段下实测月行迟疾之数,与平行相较,以求积差。 积限 积差 第一段 一十二 一度二十八分七一二 第二段 二十四 二度四十五分九六一六 第三段 三十六 三度四十八分三七九二 第四段 四十八 四度三十二分五九五二 第五段 六十 四度九十五分二四 第六段 七十二 五度三十二分九四四 第七段 八十四 五度四十二分三三七六 各置其段积差,以其段积限为法除之,为各段限平差。置各段限平差,与后段相减为一差。置一差,与后段一差相减为二差。 限平差 一差 二差 第一段 一十零分七二六零 四十七秒七六 九秒三六 第二段 一十零分二四八四 五十七秒一二 九秒本六 第三段 九分六七七二 六十六秒四八 九秒三六 第四段 九分零一二四 七十五秒八四 九秒三六 第五段 八分二五四零 八十五秒二零 九秒三六 第六段 七分四零二零 九十四秒五六 第七段 六分四五六四 置第一段限平差一十零分七二六为凡平积。置第一段一差四十七秒七六,以第一段二差九秒三六减之,余三十八秒四十微,为凡平积差。另置第一段二差九秒三十六微折半,得四秒六十八微,为凡立积差。以凡平积差三十八秒四十微,加凡平积一十零分七二六,得一十一分一十一秒,为定差。置凡平积差三十八秒四十微,以凡立积差四秒六十八微减之,余三十三秒七十二微为实,以十二限为法除之,得二秒八十一微,为平差。置凡立积差四秒六十八微为实,十二限为法,除二次,得三微二十五纤,为立差。 凡求迟疾,皆以入历日乘十二限二十分,以在八十四限已下为初,已上转减一百六十八限余为末。各以初末限乘立差,得数以加平差,再以初末限乘之,得数以减定差,余以初末限乘之,为迟疾积。其初限是从最迟最疾处顺推至后,末限是从最迟最疾处逆溯至前,其距其距最迟疾处同,故其积度同。(太阴与太阳立法同,但太阳以定气立限,故盈缩异数。太阴以平行立限,故迟疾同原。) 布立成法 置立差三微二十五纤,以六因之,得一十九微五十纤,为损益立差。置平差二秒八十一微,倍之,得五秒六十二微,再加损益立差一十九微五十纤,共得五秒八十一微,为初限平立合差。自此以损益立差,累加之,即每限平立合差。至八十限下,积至二十一秒四一五,为平立合差之极。八十一限下差一秒七八零九,八十二限下一秒七八零八,至八十三限下,平立合差,与益分中分,为益分之终。八十四限下差,亦与损分中分,为损分之始。至八十六限下差,亦二十一秒四一五,自此以损益立差累减之,即每限平立合差,至末限与初限同。置定差一十一分一十一秒,内减平差二秒八十一微,再减立差三微二十五纤,余一十一分零八秒一十五微七十五纤为加分定差,即初限损益分。置损益分,以其限平立合差益减损加之。即为次限损益分。以益分积之,损分减之,便为其下迟疾度。以八百二十分为一限日率,累加八百二十分为每限日率。(以上俱详立成。) 五星平立定三差之原 凡五星各以实测,分其行度为八段,以求积差,略如日月法。 木星(立差加,平差减。) |
虚阁网(Xuges.com) |
上一页 回目录 回首页 下一页 |