虚阁网 > 史籍 > 旧唐书 | 上页 下页 |
历志三(2) |
|
大衍步月离术第四 转终分:六百七十万一千二百七十九。 转终日:二十七;馀,一千六百八十五;秒,七十九。 转法:七十六。 转秒法:八十。 推天正经朔入转 以转终分去朔积分,不尽,以秒法乘,盈转终分又去之,馀如秒法一而入转分。不尽为秒。入转分满大衍通法,为日。不满为馀。命日算外,即所求年天正经朔加时入转日及馀秒。 求次朔入转 因天正所入转差日一、转馀二千九百六十七、秒分一,盈转终日馀秒者去之。数除如前,即次日经朔加时所入。考上下弦望,如求经朔四象术,循变相加,若以经朔望小馀减之,各其日夜半所入转日及馀秒。 求朔弦望入朓朒定数 各朔其所入日损益而半之,为通率。又二率相减为率差。前多者,以入馀减大衍通法,馀乘率差,盈大衍通法得一,并率差而半之。前少者,半入馀,乘率差,亦以大衍通法除之,为加时转率。乃半之,以损益加时所入,馀为转馀。其转馀,应益者,减法;应损者,因馀。皆以乘率差,盈大衍通法得一,加于通率。转率乘之,大衍通法约之,以朓减朒加转率为定率。乃以定率损益朓朒积为定数。其后无同率者,亦因前率,益者以通率为初数,半率差而减之。应通率,其损益入馀,进退日者,分为二日,随馀初末如法求之,所得并以损益转率。此术本出《皇极历》,以究算术之微变。若非朔望有交者,直以入馀乘损益,如大衍通法而一,以损益朓朒为定数,各得所求。 七日初:二千七百一,约为大分八。末:三百三十九,约为大分一。 十四日初:二千三百六十三,约为大分七。末:六百七十七,约为大分二。 二十一日初:二千二十四,约为大分六。末:一千一十六,约为大分三。 二十八日初:一千六百八十六,约为大分五。末:一千三百五十四,约为大分四。 右以四象约转终日及馀,均得六日二千七百一分。就全数约为大分,是为之八分。以减法,馀为末数。乃四象驯变相加,各其所当之日初末数也。视入转馀,如初数以下者,加减损益,因循前率;如初数以上,则反其衰,归于后率云。 求朔弦望定日及馀 以入气、入转朓朒定数,同名相从,异名相消。乃以朓减朒加四象经小馀。满若不足,进大馀。命以甲子算外,各其定日及小馀。干名与后朔叶同者,月大。不同者,小;无中气者,为闰月。凡言夜半者,皆起晨前子正之中。若注历观弦望定小馀,不盈晨初馀数者,退一日。其望,小馀虽满此数,若有交蚀,亏初起在晨初已前者,亦如之。又月行九道迟疾,则三大二小。以日行盈缩,累增损之,则容有四大三小,理数然也。若俯循常仪,当察加时早晚,随其所近而进退之,使不过三小。其正月朔,若有交加时正见者,消息前后一两月,以定大小,令亏在晦二。 推定朔弦望夜半日所在度 各随定气次日以所直日度及馀分命焉。若以五星相加减者,以四约度馀。乃列朔弦望小馀,副之,以乘其日盈缩分,如大衍通法而一,盈加缩减其副,以加其日夜半度馀,命如前,各其日加时日躔所次。 推月九道度 凡合朔所交,冬在阴历,夏在阳历,月行青道。冬、夏至后,青道半交在春分之宿,殷黄道东。立冬、夏后,青道半交在立春之宿,殷黄道东南。至所冲之宿亦如之也。冬在阳历,夏在阴历,月行白道。冬至夏至后,白道半交在秋分之宿,殷黄道西。立北。至所冲之宿亦如之也。春在阳历,秋在阴历,月行朱道。春、秋分后,朱道半交在夏至之宿,殷黄道南。立春立秋后,朱道半交在立夏之宿,殷黄道西南。至所冲之宿亦如之也。春在阴历,秋在阳历,月行黑道。春、秋分后,黑道半交在冬至之宿,殷黄道北。立春立秋后,黑道半交在立冬之宿,殷黄道东北。至所冲之宿亦如之也。四序离为八节,至阴阳之始交,皆以黄道相会,故月有九行。各视月交所入七十二候,距交初黄道日每五度为限。交初交中同。亦初数十二,每限减一,数终于四,乃一度强,依平。更从四起,每限增一,终于十二,而至半交,其去黄道六度。又自十二,每限减一,数终于四,亦一度强,依平。更从四起,每限增一,终于十二,复与日轨相会。各累计其数,以乘限度,二百四十而一,得度。不满者,二十四除,为分。若以二十除之,则大分。十二为母,命以半太及强弱也。为月行与黄道差数。距半交前后各九限,以差数为减;距正交前后各九限,以差数为加。此加减是出入六度,单与黄道相交之数也。若交赤道,则随气迁变不恒。计去冬至夏至以来候数,乘黄道所差,十八而一,为月行与赤道差数。凡日以赤道内为阴,赤道外为阳;月以黄道内为阴,黄道外为阳。故月行宿度入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。其在同名,以差数为加者加之,减者减之;若在异名,以差数为加者减之,减者加之。皆以增损黄道度为九道定数。 推月九道平交入气 各以其月恒中气,去经朔日算及馀秒,加其月经朔加时入交泛日及馀秒,乃以减交终日及馀秒,其馀即各平交入其月恒中气日算及馀秒也。满三元之策及馀秒则去之,其馀即平交入后月恒节气日算及馀秒。因求次交者,以交终日及馀秒加之。满三元之策及馀秒,去之。不满者,为平交入其气日算及馀秒。各以其气初先后数先加、后减其入馀。满若不足,进退日算,即平交入定气日算及馀秒也。 求平交入气朓朒定数 置所入定气日算,倍六爻乘之,三其小馀,辰法除而从之,以乘其气损益率,如定气辰数而一,所得以损益其气朓朒积为定数也。 求平交入转朓朒定数 置所入定气馀,加其日夜半入转馀,以乘其日损益率,满大衍通法而一,所得以损益其日朓朒积,乃以交率乘之,交数而一,为定数。 求正交入气 置平交入气及入转朓朒定数,同名相从,异名相消。乃以朓减、朒加平交入气馀,满若不足,进退日算,即为正交入定气日算及馀也。 求正交加时黄道宿度 置正交入定气馀,副之,乘其日盈缩分,满大衍通法而一,所得以盈加缩减其副,以加其日夜半日度,即正交加时所在黄度及馀也。 求正交加时月离九道宿度 以正交加时度馀,减大衍通法。馀以正交之宿距度所入限数乘之,为距前分。置距度下月道与黄道差,以大衍通法乘之,减去距前分,馀满二百四十除,为定差。不满者,一退为秒。以定差及秒加黄道度,馀,仍计去冬至夏至以来候数,乘定差,十八而一,所得依名同异而加减之,满若不足,进退其度,命如前,即正交加时月离所在九道宿度及馀也。 推定朔弦望加时月所在度 各置其日加时日躔所在,变从九道,循次相加。凡合朔加时月行潜在日下,与太阳同度,是为离象。凡置朔弦望加时黄道日度,以正交加时所在黄道宿度减之,馀以加其正交九道宿度,命起正交宿度算外,即朔弦望加时所当九道宿度也。其合朔加时若非正交,则日在黄道,月在九道,各入宿度,虽多少不同,考其去极,若应准绳,故云月行潜在日下,与太阳同度。 以一象之度九十一、馀九百五十四、秒二十二半为上弦,兑象。倍之而与日冲,得望,坎象。参之,得下弦,震象。各以加其所当九道宿度,秒盈象统从馀,馀满大衍通法从度。命如前,各其日加时月所在度及馀秒也。综五位成数四十,以约度馀,为分。不尽者,因为小分也。 推定朔夜半入转 恒视经朔夜半所入,若定朔大馀有进退者,亦加减转日,否则因经朔为定。径求次定朔夜半入转,因前定朔夜半所入,大月加转差日二,小月加日一,转馀皆一千三百五十四秒分一。数除如前,即次月定朔夜半所入。 求次日 累加一日,去命如,各其夜半所入转日及馀秒。 求每日月转定度 各以夜半入转馀,乘列衰,如大衍通法而一,所得以进加退减其日转分,为月每所转定分,满转法为度也。 求朔弦望定日前夜半月所在度 各半列衰,减转分。退者,定馀乘衰,以大衍通法除,并衰而半之;进者,半定馀乘衰,定以大衍通法除,皆加所减。乃以定馀乘之,盈大衍通法得一,以减加时月度及分。因夜半准此求转分以加之,亦得加时月度。若非朔望有交,直以定小馀乘所入日转交分,如大衍通法而一,以减其日时月度,亦得所求。 求次日夜半月度 各以其日转定分加之,分满转法从度,命如前,即次日夜半月所在度及分。 推月晨昏度 各以所入转定分乘其日夜漏,倍百刻除,为晨分。以减转定分,馀为昏分。分满转法,从度。以加夜半度,望前以昏加,望后以晨加。各得其日晨昏月所在度及分。 |
虚阁网(Xuges.com) |
上一页 回目录 回首页 下一页 |