虚阁网 > 名人传记 > 无尽的探索 | 上页 下页
三三


  1935年初,我在维也纳学派的一个外围团体中作了一次关于这个问题的讲演,后来我应卡尔·曼格尔之邀到他著名的“数学学术讨论会”上作一次讲演,我发现这是一个大约30人参加的非常杰出的集会,他们当中有库尔特·哥德尔、阿尔弗雷德·塔尔斯基和阿伯拉罕·瓦尔德;并目根据曼格尔的看法,我成了无意中引起瓦尔德对概率和统计学领域发生兴趣的工具,而在这个领域内,瓦尔德是非常闻名的。曼格尔在他给瓦尔德写的讣告里对这件事作了以下描述。

  那时,发生了第二件事,这件事证明对瓦尔德以后的生活和工作具有决定性的重要意义。维也纳的哲学家卡尔·波普尔……试图使随机序列的概念精确化,从而纠正冯·米塞斯集合体定义明显的缺点,在我听到了(在石里克的哲学学派里)关于波普尔想法的不太专门的阐明后,我要他把那个重要主题详细地向数学学术讨论会作介绍。瓦尔德对此产生了浓厚的兴趣,结果就是他关于集合体概念的首尾一贯的高超论文……他把他对集合体存在的证明建立在集合体概念的双重相对化基础上。

  曼格尔接着描述集合体定义,并且作出结论说:

  尽管瓦尔德的相对化限制了原来的不受限制的(但是难以运用的)集合体概念,但它比科普兰、波普尔和赖辛巴赫的不规则性要求要无力得多。事实上,它把这些要求作为特例包括在内了。

  这是很对的,瓦尔德出色地解决了把冯·米塞斯的要求放宽到最低限度的问题。这一点给我留下了最深刻的印象。但是正如我有机会向瓦尔德指出的那样,这并没有解决我的问题:对于0和1具有同等概率的“瓦尔德集合体”仍然可以从一大堆数十亿个0开始,因为随机只是一个在极限中如何表现的问题。大家公认,瓦尔德的工作提供了一个把一切无穷序列类都分为集合体和非集合体的一般方法,而我的工作仅仅允许构成任意长度的某种随机序列——可以说是某些很特殊的模型。然而任何长度的任何给定有限序列总是能这样延续,以致不是成为瓦尔德意义上的集合体,就是成为瓦尔德意义上的非集合体。(这同样适用于科普兰、赖辛巴赫、丘奇和其他人的序列。)

  我在一段很长时间内认为我对我的问题的解决,似乎在哲学上是十分令人满意的,它能够借普遍化而使它在数学上更有意义,而且认为瓦尔德的方法也可以用于此目的。我与瓦尔德讨论了这个问题,我和他变得很友好,希望他能自己去做这件事。但是这是困难时期:在我们两人都移居到世界不同地区以前,我们谁都没有设法回到这个问题上来。

  还有一个与概率密切有关的问题:一个陈述或一个理论的内容的(量度)问题。我已在《研究的逻辑》中表明,一个陈述的概率与其内容成反比,因此,它可以用于建构内容的量度(内容的这种量度充其量是比较的,除非这个陈述是关于一种靠碰运气取胜的游戏的陈述,或者也许是关于某种统计学的陈述。)

  这提示了在概率计算的诠释中,至少有两种诠释是极为重要的:(1)一种允许我们谈论诸如掷一便士钱币猜正反面或电子出现在荧光屏上之类的(单个)事件的概率;以及(2)陈述或命题尤其是(普遍性程度不同的)猜想的概率。那些认为验证的程度可以用概率来量度的人,以及那些像我自己那样希望否定它的人都需要这第二种诠释。

  至于我的验证度这个概念以简要的公式概括一个理论通过——或没有通过——对它的检验的状况的报告,包括对检验严格程度的评价:惟有以批判精神进行的检验——试图反驳——才算数。一个理论通过这些检验,就可以表明它的生命力——“适者生存。”当然它只能证明它“适应”于经受得住它已经受过的那些检验,恰如一个有机体的情况一样,不幸的是“适应”仅仅意味着现实的生存和过去的表现,决不能保证将来的成功。

  我把(而且仍然把)一种理论的验证度仅仅看作是对过去表现质量的批判报告:它不能够用来预测将来的表现。(当然理论可以有助于我们预测将来的事件。)因此,它有一个时间指数:人们只能在理论的批判讨论的一定阶段谈论它的验证度。在某些情况下,如果人们希望根据过去的讨论来评价两种或更多种相竞争的理论的相对价值,那么它便提供了一个很好的指导。当面临需要根据某种理论行动时,理性的选择就是根据那种理论(如果有的话)行动,这种理论迄今为止比它的竞争者更经得住批判:没有比愿意接受批判的概念更好的理性观念了,也就是从真理调节概念的观念来讨论竞争理论价值的批判。因此,一个理论的验证度就是一种对实践的理性指导。尽管我们不能证明一个理论——也就是证明我们对它的真理性的信仰,但我们有时能够证明我们宁愿选择某个理论,而不是另一个理论,如果它的验证度更大的话。

  我已经能够非常简单地表明:由于证明爱因斯坦理论的验证度更大,爱因斯坦的理论(至少在写这本书的时候)比牛顿的理论更可取。

  关于验证度的决定性论点是:因为它随检验的严格程度而增加,所以仅仅那些具有高度可检验性或丰富内容的理论才可能有高的验证度。但是这意味着验证度是与不可几性而不是与概率相关联,因此不能把验证度与概率混为一谈(尽管可以用概率规定验证度——如同可用不可几性规定它一样)。

  所有这些问题在《研究的逻辑》中都提出或论述了,但是我认为对这些问题还有更多的工作要做,而概率计算的公理化是我下一步应该做的事情。


虚阁网(Xuges.com)
上一页 回目录 回首页 下一页